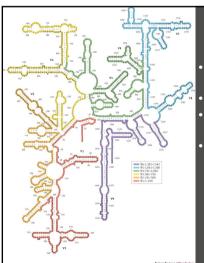
Use of Emerging Technologies for Monitoring of Water Quality and Ecosystem Health



Dr Megan J. Huggett Dr Troy Gaston Associate Professor Bill Leggat

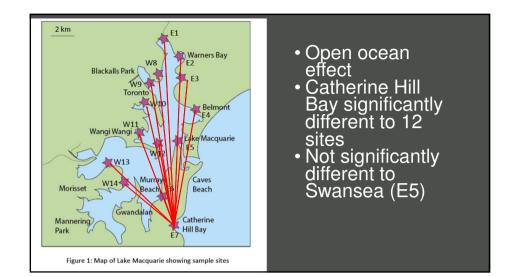
Background

- Funded by a Lack Macquarie City Council grant
 - Emerging tools for monitoring water quality
 - Provide information on sources of faecal contamination (both human and non-human)
 - Detect putative pathogens and whole microbial population shifts
- This project tested the applicability of two recently developed approaches to detect human and marine pathogens and identify the source of faecal contamination (dog vs human) in Lake Macquarie.

16s ribosomal region

- Molecular profiling of bacterial populations
- 16s rDNA found in all bacteria Consists of a variety of variable and
- conserved regions
- Variable regions (V1-V9) can be used as a marker to bacterial taxa (sequence variants)

- The two methods that were tested, to evaluate as possible additions to the water quality monitoring program of Lake Macquarie, are:
 - 16S gene sequencing, to detect organisms such as Vibrio, Salmonella and other pathogenic organisms (not only *E. coli*) and to enable microbial community diversity to be determined.
 - Indicators of human faecal contamination via Bacteriodetes Polymerase Chain Reaction (PCR) and sequencing.


16s gene s	equencing	P(CR
Gives relative abundance of all bacteria	Expensive (~\$60/sample)	Cheap (\$1-5 /sample)	Specific for 1 (or small group of bacterial types)
Examines known and unknown bacteria	Slow (1-4 weeks for results)	Can be semi-quantitative	Can have false positive
Can detect early changes to bacterial populations	Performed by a specialized lab	Rapid 1 day to results	
		Can be done in any general molecular lab	

- Water samples taken from 14 sites that are monitored by the Lake Macquarie City Council water quality program
 - Samples taken at
 - 4th December 2018
 - 14th January 2019
 - 5th February 2019
 - 5th March 2019
 - 2nd April 2019
- Normal water quality sampling season November April
- 1 L water samples collected, placed on ice, filtered through a 0.2 µm filter, stored at -80°C and then DNA extracted
- Water quality measures
- Sequencing utilised the V3-V4 region of the 16s rDNA gene and sequenced using an Illumina MiSeq
- Bioinformatically analysed
 - Putative faecal and pathogenic bacteria further characterised

Heatmap of amplicon sequence variants (ASV) present in at least one samples above 5%.

Site differences

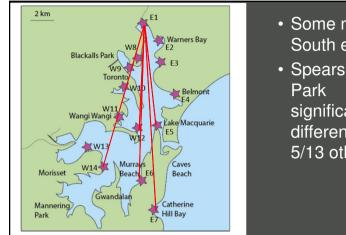
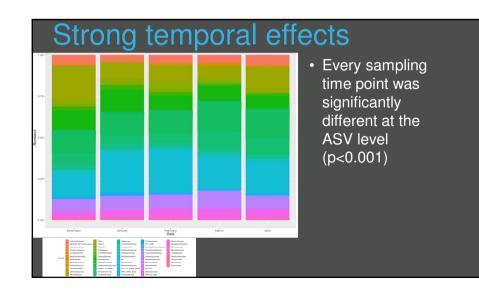
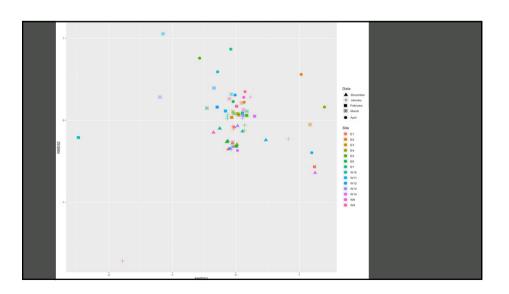
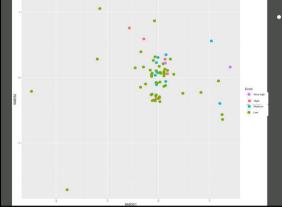




Figure 1: Map of Lake Macquarie showing sample sites

 Spears Point significantly different to 5/13 other sites

Environmental drivers

- Measured Temperature, Conductivity, Salinity, pH, Turbidity, DO, TDS
- These accounted for 31.4% of the variation in the microbial dataset
- Two main drivers
 - Temperature (19.72 °C Belmont (E4) April, 30 °C Balcolyn (W13) January) and
 - Salinity substantial variability (16.57 Belmont (W13), 38.83 ppt Eleebana (E2) March)
 Western sites high in February, eastern sites high in March and January
 - Rainfall over study period
 - December, January and March dry periods (4 days of no rain)
 - Feb and April followed/during light rains (10-20 mm over previous 4 days)
 - March (38 mm)


Did sequencing results match *Enterococcus* counts?

Site	E1	E2	E3	E4	ES	E6	E7	W8	W9	W10	W11	W12	W13	W14
1.00	Speers Pt	2000	Croudace		-	Carns	Catherine	1000		Kilaben	Arcadia	100 100	10000	
Site	Park	Eleebana	Bay	Belmont	Swansea	Wharf	Hill Bay	Bolton Pt	Toronto	Bay	Vale	Wangi	Balcolyn	Sunshine
December	0	4	4	4	2	2	0	0	0	4	2	2	8	0
January	14	48	0	0	44	10	4	0	6	2	2	0	6	0
February	2	12	2	0	180	2	2	2	2	8	0	8	6	2
Morch	0	0	110	4	18	0	6	0	0	2	0	0	6	0
April	170	32	600	1600	200	16	0	420	30	110	34	26	260	0

ASV no.	SILVA assigned taxonomy	Accession no. of nearest match in NCBI	Species designation of nearest match in NCBI database	% identity to nearest match in NCBI	Potential pathogen	Possible source
8217	Bacillus aquimaris	MK934550 MK262997	Bacillus aquimaris Bacillus vietnamensis	100%	No	Environmental (aquatic) Environmental (sediment)
6038	Bacillus sp.	MN216227 MN213373	Bacillus cereus Bacillus cereus	100% 100%	Yes	Environmental (soil) Environmental (worm GI [®] tract
6316	Bacillus sp.	KX898175 NR_024690	Uncultured sequence Bacillus carboniphilus	100% 99.53%	No	Environmental (limpet) Unidentified
3401	Exiguobacterium sp.	MG190720 MG190711	Exiguobacterium profundum Exiguobacterium aestuarii	100%	No	Environmental (sediment) Environmental (sediment)
8930	Exiguobacterium sp.	MN192433 MN100070	Exiguobacterium mexicanum Exiguobacterium aurantiacum	100%	No	Unidentified Environmental (plant)
5291	Listeria sp.	CP041213 CP041211	Listeria monocytogenes Listeria monocytogenes	100%	Yes	Unidentified Unidentified
2547	Planococcus sp.	MK104526 KU726519	Planococcus maritimus Planococcus rifietoensis	100%	No	Unidentified Environmental (sheepskin)
3366	Planococcus sp.	MN187272 MK879392	Planococcus maitriensis Planococcus maritimus	100%	No	Environmental (plant) Environmental (biofilm)
10882	Unidentified Bacilli	HM437410 JQ579821	Uncultured sequence Uncultured sequence	100%	No	Environmental (marine) Environmental (sediment)

- Sequence analysis did not identify any ASV within the Enterococcus
- Identified 9 in the class Bacilli, including two potential pathogens, *Listeria* and *Bacillus*

Was there a relationship between population structure and counts?

- No significant groupings based upon *Enterococcus* load
 - Low <10
 - Medium 10-100
 - High 100-500
 - Very high >500

Counts vs sequencing reads for Bacilli

site	E1	E2	E3		E4	E5	E6	E7	W8	W9	W10	W11	W12	W13	W14
	Speers Pt		Crou	udace			Cams	Catherine			Kilaben	Arcadia			
Site	Park	Eleeban	a Bay		Belmont	Swansea	Wharf	Hill Bay	Bolton Pt	Toronto	Bay	Vale	Wangi	Balcolyn	Sunshine
December	0		4	4	4	2	2	0	0	0	4	2	2	8	0
lanuary	14		48	0	0	44	10	4	0	6	2	2	0	6	0
February	2		12	2	0	180	2	2	2	2	8	0	8	6	2
March	0		0	110	4	18	0	6	0	0	2	0	0	6	0
April	170		32	600	1600	200	16	0	420	30	110	34	26	260	0
	ercent abu														acilli ASV⊴
Site		ndance a		A assign E3	ed taxon		cilli ampl ws		5 E6	W1		SILV	/A assigned	taxonomy	
		V11 E				W14	W8		5 E6			SILV			
Site	E4 V	V11 E	5	E3	ES February	W14	W8	W13 E	5 E6	W1	2	SILV	/A assigned	taxonomy Spec oquii	
Site Month	E4 V Decem	V11 E	5	E3	ES February	W14	W8	W13 E arch	5 E6	W1: April	2 Fami	SILV aceae	/A assigned Genus	taxonomy Spec	ies
Site Month ASV8217	E4 V Decem	V11 E ber J: 0	5	E3	ES February	W14 0 0 0.013967	W8 Mi 0	W13 E arch 0	5 E6	April 0	2 Fami O Bacil	SILV ly C aceae l aceae l	/A assigned Genus Bacillus	taxonomy Spec oquii	ies
Site Month ASV8217 ASV6038	E4 V Decem 0	V11 E ber J: 0 0	5	E3	E5 February 0 0 0 0 0.01167 0 0	W14 0 0 0.013967	W8 M: 0 0 0 0	W13 E arch 0 0 0.021658	5 E6	W1: April 0	2 Fami O Bacil O Bacil	SILV aceae I aceae I aceae I	/A assigned Genus Bacillus Bacillus	taxonomy Spec oquii NA NA rium NA	ies
Site Month ASV8217 ASV6038 ASV6316	E4 V Decem 0 0	V11 E ber J: 0 0 0	5	E3	E5 February 0 0 0 0 0.01167 0 0	W14 0 0 0.013967 9 0	W8 M: 0 0	W13 E arch 0 0 0.021658	5 E6	W1: April 0 0	2 Fami 0 Bacil 0 Bacil 0 Bacil	SILV aceae & aceae & aceae & y_XII &	/A assigned Genus Bacillus Bacillus Bacillus	taxonomy Spec oquii NA rium NA	ies
Site Month ASV8217 ASV6038 ASV6316 ASV3401 ASV8930 ASV5291	E4 V Decem 0 0 0 0 0 0 0	/11 E ber J 0 0 0 0 0 0 0 0.005567	5 anuary 0 0 0 0 0 0	E3	E5 February 0 0 0 0 0.01167 0 0 0 0 0 0	W14 0 0 0 0 0.013967 9 0 0 0 0 0 0 0 0 0	W8 M: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W13 E arch 0 0 0.021658 0 0	5 E6 0 0 0.025147 0 0	W1: April 0 0 0 0.00883 0 0	Fami O Bacil O Bacil O Bacil O Bacil O Fami O Fami O Liste	SILV aceae & aceae & aceae & y_XII & y_XII & iaceae &	/A assigned Genus Bacillus Bacillus Exiguobacte Exiguobacte Listeria	taxonomy Spec oquii NA NA rium NA rium NA NA	ies
Site Month ASV8217 ASV6038 ASV6316 ASV3401 ASV3930	E4 V Decem 0 0 0 0 0 0 0	/11 E ber J 0 0 0 0 0 0 0 0.005567	5	E3	E5 February 0 0 0 0 0.01167 0 0 0 0 0 0	W14 0 0 0 0 0.013967 9 0 0 0 0 0	W8 M: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W13 E arch 0 0 0.021658 0 0	5 E6 0 0 0.025147 0 0	W1: April 0 0 0.00883 0	Fami O Bacil O Bacil O Bacil O Bacil O Fami O Fami O Liste	SILV aceae & aceae & aceae & y_XII & y_XII & iaceae &	/A assigned Genus Bacillus Bacillus Bacillus Exiguobacte Exiguobacte	taxonomy Spec oquii NA NA rium NA rium NA NA NA	ies
Site Month ASV8217 ASV6038 ASV6316 ASV3401 ASV8930 ASV5291	E4 V Decem 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/11 E ber J 0 0 0 0 0 0 0 0.005567	5 anuary 0 0 0 0 0 0	B	ES February 0 0 0 0 0.01167 0 0 0 0 0 0 0 0 0	W14 0 0 0 0 0.013967 9 0 0 0 0 0 0 0 0 0	W8 M: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W13 E arch 0 0 0.021658 0 0	5 E6 0 0 0.025147 0 0	W1: April 0 0 0.00883 0 0 022074	Fami O Bacil O Bacil O Bacil O Bacil O Fami O Fami O Liste	SILV sceae t aceae t aceae t y_XII t iaceae t y_XII t iaceae t coccaceae t	/A assigned Genus Bacillus Bacillus Bacillus Exiguobacte Exiguobacte Listeria Planococcus	taxonomy Spec oquii NA NA rium NA rium NA NA NA	ies

Conclusions

- Sequencing of the V3-V4 region of the 16S rDNA gene of samples within the Lake revealed a typical marine/coastal aquatic assemblage, which was driven primarily by changes in temperature and salinity.
- · Some geographic patterns of microbial populations
- Sequencing also revealed a diverse number of both faecal indicator bacterial taxa, as well as putative pathogens. These were generally present in very low mean relative abundance within samples.
- The indicator taxa and putative pathogens were most abundant and most diverse during the same sample time points that *Enterococcus* counts were highest within the system, that is, during April 2019.

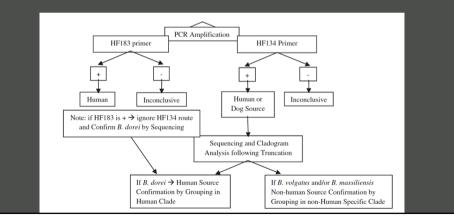
Future directions

- Currently resequencing subset of samples using a different variable region
- Expanding to other sites in conjunction with the Central Coast Council to examine effectiveness

Acknowledgments

UoN

Tess Moriarty Alessandra Suzzi Volunteers



LMCC

Andrew Irelend LMCC officers

PCR approach

